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Characterization of Nicalon fibres with varying
diameters
Part II Modified Weibull distribution
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Diameters vary significantly in a tow of commercial NicalonTM fibres, which is one of the
most attractive ceramic reinforcements for structural composites. It was found that the
strength distribution of Nicalon fibres could not be adequately characterized using either
single- or bi-modal Weibull distribution. A recently proposed modified Weibull distribution
can account for the effect of varying diameter in the characterization of fibre strength. To
verify the validity of the modified Weibull distribution, comprehensive mechanical testing
and fractographic studies have been conducted on Nicalon SiC fibres with diameters varying
from 8 to 22lm. The experimental results have been reported in Part I. Part II of this paper
further modifies the derivation of the modified Weibull distribution to yield a relationship
which is similar in form, but soundly based on experimental findings. Factors considered in
the modified Weibull distribution include the dependence of fracture toughness and flaw
density on fibre diameter, both of which may vary with fibre diameter, as reported in Part I.
Comparison with experimental data shows that the current modified Weibull distribution
works very well, while both single-modal and bi-modal Weibull distributions are inadequate
for describing Nicalon fibres with varying diameters.  1998 Chapman & Hall
1. Introduction
Nicalon silicon carbide fibre is increasingly being used
as reinforcement for advanced composite materials
[1—7]. Fibre strength is a major factor in determining
the strength of fibre-reinforced composite materials.
In order to predict the strength of a fibre-reinforced
composite, it is essential to understand and accurately
characterize the distribution of fibre strength. Nicalon
fibres exhibit brittle fracture under tensile stress [1, 3],
which is typical of advanced ceramic fibres. The
strength of Nicalon fibre, similar to that of other
ceramic fibres, is size dependent [8—11], and displays
a range of experimental values for a given configura-
tion.

A tow of commercial Nicalon fibres typically has
a range of fibre diameters [12—17]. For example, the
Nicalon (SiC) fibre spool (Dow Corning) used in this
study contains fibres with individual diameter ranging
at least from 8 to 22 lm. When Nicalon fibres with
such a large diameter variation are used as reinforce-
ments for a composite component, a practical ques-
tion arises as to how to characterize the strength of the
fibres so that the composite strength can be predicted
Present Address: Department of Materials Science and Mineral Engin

0022—2461 ( 1998 Chapman & Hall
during the design stage. The Weibull distribution [18]
is the first and most important function [19—20] that
has been widely used to characterize brittle ceramic
fibres for their strength distribution and dependence
on gauge length [21—24]. However, it has been found
inadequate for characterizing the diameter depend-
ence of fibre strength, because factors such as fracture
mechanics and material structure, which are not con-
sidered in the Weibull distribution, also affect the
ceramic fibre strength [15, 20].

A bi-modal Weibull distribution can be used to
characterize the strength of ceramic fibres when two
distinct flaw populations are presumed to exist. How-
ever, as reported in Part I of this paper, as well as in
a previous study [1], more than two types of flaws are
found to exist in Nicalon fibres, suggesting that the
bi-modal Weibull distribution may not be appropriate
in this situation. In addition, the experimental results
reported in Part I of this paper indicate that the
apparent fracture toughness of Nicalon fibres in-
creases with decreasing diameter. The bi-modal
Weibull distribution cannot take into account the
fracture toughness variation with varying diameter,
eering, University of California, Berkeley, CA 94720, USA.
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and therefore may yield misleading results when used
to describe the statistical strength of Nicalon fibres. It
will be shown later that the bi-modal Weibull distribu-
tion is indeed inappropriate for characterizing the
strength of Nicalon fibres.

The current ASTM standard [25] does not account
for the effect of diameter variation on fibre strength. It
only recommends using the average fibre diameter in
calculating fibre strength, which may be reasonable if
the fibre diameter does not vary much, but is certainly
not appropriate for Nicalon fibres because of their
large diameter variation. Watson et al. [26] and An-
dersson et al. [17, 27] realized the problem associated
with varying fibre diameter in using the Weibull statis-
tics, but did not try to solve it.

Batdorf [20] proposed that the fracture statistics
should be based on a proper consideration of three
elements: extreme value statistics (e.g. weakest link
theory), fracture mechanics, and materials structure.
Statistical theories incorporating these elements are as
yet in their infancy. Batdorf [20] believes that such
theories offer the greatest long-range promise for fu-
ture progress. The Weibull theory is almost exclus-
ively based on the weakest link theory, which explains
its failure in characterizing Nicalon fibres with varying
diameters. To overcome some of the shortcomings of
the Weibull distribution, Wagner [28] assumed that
there is a deterministic functional relationship be-
tween the Weibull scale parameter and the diameter of
polymer fibres. He suggested that such a relationship
could arise from the microstructure variation with
varying fibre diameters. By relating the scale para-
meter of the Weibull distribution with the fibre dia-
meter in such a way, Wagner effectively incorporated
the fibre structure variation into the Weibull distribu-
tion. However, Wagner’s theory does not account for
the effect of fracture mechanics.

We [15, 29] have proposed a modified Weibull dis-
tribution to characterize the strength of ceramic fibres
with varying diameters, which can account for all
three factors proposed by Batdorf [20]. However,
several assumptions made during the derivation of the
modified Weibull distribution need to be verified ex-
perimentally.

To verify the validity of the modified Weibull distri-
bution for the characterization of the strength of
Nicalon SiC fibres, extensive mechanical testing and
fractographic analysis have been conducted in this
investigation. The experimental results have been re-
ported in Part I of this paper [30]. Based on these
findings, Part II of this paper will further validate and
modify the derivation of the modified Weibull distri-
bution. Comparison with experimental data will be
made to show the validity of the modified Weibull
distribution in characterizing the strength of Nicalon
fibres with varying diameters, and also to show the
limitation of the original Weibull distribution.

2. Modified Weibull distribution
Several different types of flaws, such as individual
pores, pore clusters, granular defects, and surface
flaws, have been found to cause failure in Nicalon
1476
Figure 1 Effects of flaw size and flaw type on the strength of Nicalon
fibres. The flaw size has much more effect on the strength of Nicalon
fibres than flaw type. (f) Surface flaw; (j) pore cluster; (n) granular
defect; (e) individual pore.

fibres [30]. Different flaw types may have different
ranges of size distribution. Fig. 1 shows the effect of
both the flaw size and flaw type on the strength of
Nicalon fibres. It can be seen that the flaw size has
much more effect on the fibre strength than does flaw
type. Therefore, only the general flaw size distribution
will be considered in the following derivation. Let us
define the expected number of critical size flaws under
stress r in the fibre volume under testing as P. For the
simplest approximation, one may assume that failure
occurs at which P"1 [10]. If P is less than 1, it may
be considered as the probability that a flaw will occur
[20]. At a fixed fibre diameter, P will be proportional
to the gauge length, if the fibre-processing parameters
and subsequent handling conditions do not vary with
fibre length. At a fixed fibre gauge length, P can be
generally assumed to be proportional to de, where e is
a constant and d is the fibre diameter. If the flaw
density follows ideal Weibull statistics, e equals 2 for
volume flaws, and 1 for surface flaws [16]. However,
e could be any positive value if the fibre diameter
affects the flaw density. Based on the above discussion,
the expected number of critical size flaws, P, in a fibre
of length ¸ and diameter d can be expressed as

P"C¸de (1)

where C is a constant.
Derived from weakest link theory, Weibull statistics

assumes that the probability of encountering a critical
flaw, and hence the probability of fibre failure is pro-
portional to fibre volume for fibres failing due to
volume flaws [16, 20]. This yields a Weibull distribu-
tion in the form

F (r)"1!expC!A
r

rvB
bv

»D (2)

where F(r) is the probability of a fibre having
a strength less than or equal to r, rv and bv are
Weibull scale and shape parameters related to volume,
and » is fibre volume. However, it is the expected
number of critical size flaws, and not the fibre volume,
that ultimately determines fibre failure [15, 29].



Figure 2 (a) Student’s t-testing indicates with 99% confidence that
mirror constants A

.
"rr1@2

.
increases with decreasing fibre dia-

meter. (b) Nicalon fibres tested with gauge lengths of 10 (s), 25 (5)
and 50 mm (m) in mineral oil show the increase of strength with
decreasing diameter.

Therefore, a more general form of the Weibull distri-
bution should use the probability of encountering
a critical flaw P instead of the fibre volume. Thus, we
can write the probability-based Weibull distribution
as

F (r)"1!expC!A
r
r
p
B

b
P

PD (3)

where r
P

and b
P

are Weibull scale and shape para-
meters related to P. Substituting Equation 1 into
Equation 3 yields

F (r)"1!expC!CA
r

r
P
B

b
P

¸deD (4)

As pointed out in our previous work [15, 29], fracture
mechanics and microstructure can also affect the fibre
strength. Our experimental data in Part I of this paper
indicate that the fracture toughness and mirror con-
stant of Nicalon fibres increases with decreasing dia-
meter (see Fig. 2), which could have been caused by the
combination of both fracture mechanics and micro-
structure. Nicalon fibres with smaller diameters may
have higher density and less flaws [30, 31] because of
more effective pyrolysis, which will result in higher
fracture toughness. From Fig. 2a, it is reasonable to
assume that a power relationship exists between the
mirror constant and the fibre diameter (Fig. 2), i.e.

A
.
"r

f
r1@2
.

"Bd~u (5)

where A
.

is the mirror constant, r
f

is the fracture
strength of fibre, and r

.
is the fracture mirror radius,

and B and u are constant.
It has been shown in Part I [30] that r

.
/r, the ratio

of fracture mirror radius to fibre radius, does not
change with varying fibre diameter, although the
value of r
.
/r exhibit scatter in the range of 0.04 to 0.28,

that is

r
.
r
"R (6)

where R is a constant. Substituting Equation 6 into
Equation 5, taking into account r"d/2, and rearrang-
ing yields

r
f
"Ed~b (7)

where E and b are constants and can be expressed as

E"(2/RB)1@2 (8)

and
b"u#1/2 (9)

Of the two Weibull distribution parameters in
Equation 4, r

P
is a measure of the average fibre

strength and b
P

is a measure of scatter in strength.
Since r

f
in Equation 7 is non-statistical, it should only

affect average fibre strength. Therefore, we can incor-
porate Equation 7 into Equation 4 by multiplying
r
P

with another parameter r
f

F(r)"1!expC!CA
r

r
P
r

f
B

b
P

¸deD (10)

Substituting Equation 7 into Equation 10 yields

F (r)"1!expC!A
r

r
0
B

b
P

¸dhD (11)

where

r
0
"C!1/b

P Er
P

(12)

and

h"e#bb
P

(13)

where h can be considered as the diameter dependency
factor, which describes the effect of diameter on fibre
strength.

The average fibre strength as a function of fibre
diameter and length can be derived from Equation 11
as [32]

r6 "r
0
! A1#

1

b
P
B¸!1/b

P d!h/b
P (14)

where ! (1#1/b
P
) is a gamma function. Equation 14

can also be written as

r6 "K¸~m d~n (15)

where the values of K, m and n can be obtained by
fitting Equation 15 to experimental data, and the
parameters for the modified Weibull distribution can
be subsequently calculated as

b
P
"

1

m
(16)

h"b
P
n (17)

and

r
0
"

K

!(1#1/b
P
)

(18)
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3. Comparison with experimental data
3.1. Modified Weibull distribution
The following two equations can be derived from
Equation 15

lnr6 #m ln¸"lnK!n ln d (19)

lnr6 #n ln d"lnK!m ln¸ (20)

Assuming an initial value for m, Equation 19 can be
fitted to experimental strength data for Nicalon fibres
(Fig. 2b) to obtain a value of n. The n value can then be
used to fit Equation 20 to experimental data to yield
a new m value. The above calculation is iterated if the
m or n value is different from the previous m or n value
used in the calculation, until consistent m and n values
are obtained. Fig. 3a and b show the final round of
curve fittings for the strength data of Nicalon fibres
(see Fig. 2b), which yield m"0.14909, n"0.56433,
and K"23.8456. The modified Weibull distribution
parameters can be calculated using Equations 16—18
as b

P
"6.707, h"3.875, and r

0
"25.696.

The Weibull parameters r
0

and b
P

can also be
directly obtained by fitting Equation 11 to experi-
mental data. Equation 11 can be rearranged as

ln ln
1

1!F (r)
!ln¸dh"!b

P
ln r

0
#b

P
lnr (21)

where F (r) is calculated from experimental data as
[33]

F(r
i
)"

i!0.5

N
(22)

where N is the total number of tests, and the observed
fibre strength values, r

12
r

N
, are ranked in ascend-

ing order. Fig. 4 shows the fit of Equation 21 with
experimental data using h"3.875, which yields
b
P
"6.713 and r

0
"25.967. Since both Equations 15

and 21 are derived from Equation 11, and Equations
19 and 20 are derived from Equation 15, the b

P
and

r
0

values obtained from the two methods discussed
above should be consistent if Equation 11 is valid for
characterizing the strength of Nicalon fibres with
varying diameters. It is obvious that very consistent
b
P

and r
0

values have been obtained, which validate
the present modified Weibull distribution. Note that
1478
h represents the effect of diameter on fibre strength.
For the experimental strength data reported in this
paper, the h value of 3.875, obtained by fitting of
Equations 19 and 20 to the data, is a unique value that
makes Equation 21 and Equations 19 and 20 yield
consistent b

P
and r

0
values. Any other h values will

yield inconsistent b
P

and r
0

values.

3.2. Single-modal Weibull distribution
The average fibre strength as a function of fibre dia-
meter can also be obtained from the single-modal
Weibull distribution (Equation 2)

r6 "r
V
!A1#

1

b B»~1@b"K
V
»

!1/b (23)

Equation 23 can be rewritten as

lnr6 "lnK
V
!

1

b
ln» (24)

Fitting Equation 24 to the experimental strength data
for Nicalon fibres (see Fig. 5) yields K

V
"15.986 and

b"5.209, from which we also obtain r
V
"17.370.

Rearranging Equation 2, we can obtain another
way to calculate the Weibull parameters

ln ln
1

1!F (r)
!ln»"!b lnr

V
#b lnr (25)

Fitting Equation 25 to the experimental data for
Nicalon fibres (see Fig. 6) yields b"6.022 and
r
V
"14.144. It is obvious that the Weibull parameters

obtained from Equations 24 and 25 are not consistent,
although both equations are derived from Equation 2.
This suggests that the single modal Weibull distribu-
tion is inadequate for characterizing the strength of
Nicalon fibres with varying diameters.

The fibre volume can be calculated as

»"

p

4
d2¸ (26)

Substituting Equation 26 into Equation 2 yields

F (r)"1!expC!
p

4 A
r

rmB
b
V

¸d2D (27)
Figure 3 The final fitting of Equations 19 and 20 to the experimental strength data for Nicalon fibres. (a) Fitting to Equation 19 yields an
n value of 0.56433, while (b) fitting to Equation 20 yields an m value of 0.14909. Both fits yield a K value of 23.8456.



Figure 4 Fit of Equation 21 to experimental strength data for
Nicalon fibres using h"3.875 yields b

P
"6.713 and r

0
"25.967,

which are consistent with the Weibull parameters obtained from
Equations 19 and 20.

Figure 5 Fit of Equation 24 (derived from the single-modal Weibull
distribution) to the experimental fibre strength data yields
K"15.986 and b"5.209, from which we also obtain r

V
"17.370.

Figure 6 Fit of Equation 25 (derived from the single modal Weibull
distribution) to the strength data for Nicalon fibres yields b"6.022
and r

V
"14.144.

Comparing Equation 27 with Equation 11, it is obvi-
ous that the volume flaw-based single modal Weibull
distribution can be considered as a special case of the
modified Weibull distribution in that they are equiva-
lent to each other when h"2. The deviation of the
Figure 7 Plot of lnMln[1/(1!F)]N versus ln r for fibres with
a gauge length of 25mm. The curve shows more than one knee,
indicating that a bi-modal Weibull distribution is not adequate for
characterizing the Nicalon fibres with varying diameters.

h value from 3.875 in the single modal Weibull distri-
bution has caused the inconsistent b

P
and r

0
values.

3.3. Bi-modal Weibull distribution
Part I of this paper has identified four types of flaws in
Nicalon fibres: pore clusters, granular defects, indi-
vidual pores and surface flaws [30]. Theoretically, the
bi-modal Weibull distribution can only characterize
the strength of ceramic fibres with two distinct flaw
populations. However, it can still be approximately
applied to the Nicalon fibres if the collective flaw
populations found in the fibres act like two distinct
flaw types. Unfortunately, this is not the case as seen
in Fig. 7, which shows a plot of lnMln[1/(1!F)]N
versus lnr for fibres with gauge length of 25mm.
Johnson [33] has indicated that the curve should
consist of two straight lines with two different slopes
and a single knee with positive curvature near the
intersection of the two straight lines. Clearly, this
behaviour is not observed in the curve in Fig. 7, which
suggests that a tri-modal (or higher) Weibull distribu-
tion is needed. The bi-modal or multi-modal Weibull
distribution could be misleading or erroneous if used
to characterize the strength of Nicalon fibres with
varying diameters, because it cannot take into account
factors such as the effect of fracture mechanics and the
possible flaw density variation with fibre diameter.
Therefore, it is inappropriate to use the bi-modal
Weibull distribution to characterize the strength of
Nicalon fibres with varying diameters.

It is obvious from the above discussions that the
present modified Weibull distribution can satisfactor-
ily characterize the strength of Nicalon fibres with
varying diameters, while neither a single-modal nor
a bi-modal Weibull distribution is appropriate for the
task. Nevertheless, the single-modal Weibull distribu-
tion is often used to characterize the strength of
Nicalon fibres because of its simplicity, despite the
aforementioned complication associated with varying
diameter [17, 26, 27]. One of the errors caused by
using the single modal Weibull distribution is the low
calculated b value (large scatter in strength). The in-
creases in fracture toughness with decreasing fibre
diameter, as found in this study, will make the strength
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of Nicalon fibres increase faster with decreasing fibre
diameter than the case of constant K

I#
. The single-

modal Weibull distribution cannot account for the
effects of fracture toughness variation and possible
flaw density variation with fibre diameters. Instead, it
treats these effects as scatter of fibre strength, which
will erroneously result in larger strength scatter and
consequently smaller b value. The b value for Nicalon
fibres obtained using the single-modal Weibull distri-
bution has been reported to be in the range of 4 to
6 [16]. Using the single modal Weibull distribution,
we have obtained the b value as 5.2 from Equation 24,
and 6.0 from Equation 25, both of which fall into the
reported range. However, the present modified
Weibull distribution yields a b value of 6.7, higher
than the reported range. This is because the present
theory can account for the fracture toughness vari-
ation and possible flaw density variation with fibre
diameter, further demonstrating the usefulness of the
present modified Weibull distribution.

4. Conclusions
Based on experimental findings for the strength and
fracture of Nicalon fibres, a modified Weibull distribu-
tion has been derived for Nicalon fibres with varying
diameters. The modified Weibull distribution can take
into account the fracture toughness variation and pos-
sible flaw density variation with varying fibre dia-
meters, and shows excellent consistency in
characterizing the strength of Nicalon fibres. The
single-modal Weibull distribution is found to be inad-
equate for describing the strength of Nicalon fibres
with varying diameters, and is found to yield an erron-
eously low Weibull modulus b. The bi-modal Weibull
distribution is also found inadequate for characteriz-
ing the strength of Nicalon fibres. The present modi-
fied Weibull distribution is mathematically simpler
than a multi-modal Weibull distribution, and more
accurate than the single-model Weibull distribution.
The applicability of the modified Weibull distribution
to other ceramic fibres with varying diameters needs
to be further investigated.
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